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Three-dimensional instability of standing waves
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We investigate the three-dimensional instability of finite-amplitude standing surface
waves under the influence of gravity. The analysis employs the transition matrix
(TM) approach and uses a new high-order spectral element (HOSE) method for
computation of the nonlinear wave dynamics. HOSE is an extension of the original
high-order spectral method (HOS) wherein nonlinear wave–wave and wave–body
interactions are retained up to high order in wave steepness. Instead of global basis
functions in HOS, however, HOSE employs spectral elements to allow for complex
free-surface geometries and surface-piercing bodies. Exponential convergence of HOS
with respect to the total number of spectral modes (for a fixed number of elements)
and interaction order is retained in HOSE. In this study, we use TM-HOSE to
obtain the stability of general three-dimensional perturbations (on a two-dimensional
surface) on two classes of standing waves: plane standing waves in a rectangular
tank; and radial/azimuthal standing waves in a circular basin. For plane standing
waves, we confirm the known result of two-dimensional side-bandlike instability. In
addition, we find a novel three-dimensional instability for base flow of any amplitude.
The dominant component of the unstable disturbance is an oblique (standing) wave
oriented at an arbitrary angle whose frequency is close to the (nonlinear) frequency of
the original standing wave. This finding is confirmed by direct long-time simulations
using HOSE which show that the nonlinear evolution leads to classical Fermi–
Pasta–Ulam recurrence. For the circular basin, we find that, beyond a threshold wave
steepness, a standing wave (of nonlinear frequency Ω) is unstable to three-dimensional
perturbations. The unstable perturbation contains two dominant (standing-wave)
components, the sum of whose frequencies is close to 2Ω . From the cases we
consider, the critical wave steepness is found to generally decrease/increase with
increasing radial/azimuthal mode number of the base standing wave. Finally, we
show that the instability we find for both two- and three-dimensional standing waves
is a result of third-order (quartet) resonance.

1. Introduction
The instability of surface gravity waves is a fundamental problem in nonlinear

wave dynamics. The understanding of wave instability is of essential interest to the
prediction of steep/breaking wave development and nonlinear wave-field evolution.
For propagating waves, the stability has been relatively well studied (see Yuen &
Lake 1980 for a review). Benjamin & Feir (1967) showed that a Stokes wave of
small steepness is unstable to a sideband disturbance. Longuet–Higgins (1978a, b)
generalized their analysis to finite-amplitude Stokes waves with the inclusion of
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214 Q. Zhu, Y. Liu and D. K. P. Yue

superharmonic and subharmonic disturbances. When three-dimensional disturbances
are taken into account, McLean (1982) found the Class I and Class II instabilities,
respectively resulting from the third-order quartet and fourth-order quintet wave
resonances between the Stokes wave and the disturbances. Among other implications,
nonlinear evolution of a Stokes wave with such three-dimensional disturbances can
lead to the development of three-dimensional crescent waves observed in the field/tank
(Su 1982; Xue et al. 2001).

Instability of standing waves is a more challenging subject because of the
unsteadiness of the base flow. The associated linear analysis is more involved both in
the determination of the (nonlinear) base flow and in the need to consider an unsteady
evolution problem. Existing work typically requires the evaluation of a transition
matrix (numerically) on which an eigenvalue analysis is then performed. Results are
limited and are available for the two-dimensional problem only. Mercer & Roberts
(1992, hereinafter referred to as MR) examined the instability of a plane standing
wave to two-dimensional disturbances using fully nonlinear numerical simulations.
It is found that, like Stokes waves, plane standing waves are unstable to sideband
disturbances. A similar result may also be inferred from the instability of a pair of
counter-propagating plane waves (Ioualalen & Kharif 1994; Ioualalen, Roberts &
Kharif 1996; Kimmoun, Ioualalen & Kharif 1999). Pierce & Knobloch (1994)
investigated the instability of plane standing waves (including surface tension) subject
to long transverse modulations. Instability of plane standing waves to general three-
dimensional (in two horizontal dimensions) disturbances has not been investigated.

For the stability of three-dimensional standing waves, the quantitative determination
of the nonlinear base standing wave is itself a challenge. For axisymmetric standing
waves in a circular basin, for example, Mack (1962) derived a perturbation solution
up to third order in the wave steepness. Using the collocation method of Vanden-
Broeck & Schwartz (1981), Tsai & Yue (1987) developed a numerical method for the
fully nonlinear problem, still only for the axisymmetric case. For standing waves in
a rectangular basin, Bridges (1987) found the existence of cnoidal standing waves at
the critical width/length ratio of the basin, resulting from secondary bifurcation.

No direct computational work exists for the instability of three-dimensional
standing waves although a number of experimental investigations reveal interesting
energy transfer mechanisms among standing wave modes. In an experimental study
of wave motions inside a vertically oscillating circular tank, Gollub & Meyer (1983)
discovered that the standing waves in the tank may switch from axisymmetric to
non-axisymmetric patterns as the oscillation amplitude increases. A similar symmetry-
breaking phenomenon was also observed with propagating surface waves generated
by an oscillating half-submerged sphere in an open domain (Martin 1932; Becker &
Miles 1992). Based on an average Lagrangian method, Miles (1984a–c) carried out a
series of theoretical studies of the internal resonant interaction of standing waves in
a circular tank, which occurs at the second order in wave steepness.

In this work, we consider the two- and three-dimensional instability of finite-
amplitude standing waves in a rectangular and a circular basin. For the stability
analysis, we apply the transition matrix method for unsteady flows (e.g. von Kerczek &
Davis 1975). The method requires not only the precise determination of the nonlinear
base flow but also the calculation of the transition matrix to high accuracy. To
accomplish this, we develop a new high-order spectral element (HOSE) method
which is an extension of the high-order spectral (HOS) method for nonlinear wave
interactions (Dommermuth & Yue 1987). Since its introduction, HOS has been
extended to problems involving submerged bodies (e.g. Liu, Dommermuth & Yue
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1992) and variable bottom topography (e.g. Liu & Yue 1998). The use of the global
basis function in HOS makes problems involving complex free-surface domains
impossible and surface piercing body boundaries heretofore unattainable.

HOSE overcomes these limitations by using spectral elements. Like HOS, HOSE
accounts for nonlinear wave interactions up to a high order (M) in wave steepness.
Within each element, local spectral expansions are used while the solutions at the
element and domain boundaries are matched to assure the necessary smoothness. The
exponential convergence of HOS with respect to both M and the (total) number of
spectral modes N (for a fixed number of elements) is retained in HOSE. Significantly,
HOSE robustly solves problems involving complex free-surface domains and surface-
piercing bodies. In the present context, the accuracy and efficacy of HOSE allow a
direct computational analysis of the stability of nonlinear two- and three-dimensional
standing waves in tanks.

We first revisit the two-dimensional problem where the instability of plane standing
waves to two-dimensional disturbances (i.e. one-dimensional surface) is considered.
For this relatively simple case, we confirm MR’s finding of side-bandlike instability
and obtain quantitative comparisons with MR’s results on the frequency and growth
rate of unstable disturbances. For the new case of the three-dimensional stability of
plane standing waves, we found an instability for all amplitudes of the base standing
wave. The dominant component of the unstable mode is an oblique standing wave
whose frequency is close to that of the base standing wave. Such an oblique wave
component can exist at an arbitrary angle to the base standing wave (although the
growth rate varies). We perform long-time direct simulations to confirm such three-
dimensional instabilities and find that the nonlinear evolution results in classical
Fermi–Pasta–Ulam recurrence (see figure 9 for an example of the free-surface wave-
pattern change in the evolution cycle).

For three-dimensional standing waves in a circular basin, we find that when the
wave steepness exceeds a threshold value, they are unstable to small three-dimensional
perturbations. The unstable perturbation consists of two dominant standing-wave
components with (linear) frequencies ω1 and ω2 which satisfy ω1 +ω2 � 2Ω , where Ω

is the nonlinear frequency of the nonlinear base standing wave. (Hereinafter, we use
uppercase Ω to denote the nonlinear standing-wave frequency which is a function
of wave steepness; and lowercase ω to denote linear standing-wave frequencies
satisfying the linear dispersion relation.) For a non-axisymmetric standing wave
with wavenumber k�,ν (� � 0), where � and ν are, respectively, the mode number in
the azimuthal and radial directions, the unstable mode has dominant standing-wave
components with wavenumbers κ�−1,ν+1 and κ�+1,ν−1 (or κ�−1,ν and κ�+1,ν). For an
axisymmetric base flow, � =0, the unstable wave has dominant components κ1,ν−1

and κ1,ν . The critical wave steepness of the base standing wave above which such
instabilities obtain is found to decrease (increase) with ν (�). (See figure 15 for examples
of the three-dimensional free-surface patterns resulting from such instabilities.)

Finally, we perform a frequency component analysis of the nonlinear wave
interaction mechanisms and show that the two- and three-dimensional instabilities
we find are associated with nonlinear (third-order quartet and higher) resonant
interactions between the base flow and the unstable mode. The mechanism of such
nonlinear resonance of standing waves resembles the internal combination resonance
observed, for example, in beams and plates (e.g. Nayfeh & Mook 1979).

The rest of the paper is organized as follows. In § 2, the transition matrix method
for the stability analysis of unsteady flow is reviewed for completeness. The detailed
formulation for HOSE as well as systematic verification and convergence tests
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for HOSE are presented in § 3. In § 4, computational results for the instability
of rectangular and circular base standing waves are presented. The mechanism of
instability for standing waves is discussed in § 5. In § 6, conclusions are drawn.

2. The transition matrix method for instability of standing waves
We first present the initial boundary-value problem for the (standing) wave motion

in a tank (or basin), in the context of potential flow. We define a Cartesian coordinate
system r ≡ (x, y, z) with the vertical axis z positive upwards and z = 0 on the mean
free surface. For later convenience, we also define a polar coordinate system (r, θ) in
the horizontal plane with x = r cos θ and y = r sin θ . Inside the fluid, the velocity
potential Φ(r, t) satisfies the Laplace equation:

Φxx + Φyy + Φzz = 0. (2.1)

On the instantaneous free surface, z = ζ (x, t) where x ≡ (x, y), the nonlinear kinematic
and dynamic boundary conditions are written in Zakharov’s form (Zakharov 1968):

ζt + ∇xζ · ∇xΦ
s − (1 + ∇xζ · ∇xζ )Φs

z = 0,

Φs
t + gζ + 1

2
∇xΦ

s · ∇xΦ
s − 1

2
(1 + ∇xζ · ∇xζ )

(
Φs

z

)2
= 0,

}
(2.2)

where t denotes time, Φs(x, t) ≡ Φ(x, ζ (x, t), t) is the free-surface potential, Φs
z (x, t) ≡

Φz(x, ζ (x, t), t) is the surface vertical velocity, ∇x ≡ (∂/∂x, ∂/∂y), and g is the
acceleration due to gravity. On the side and bottom of the tank, the non-flux condition
is imposed:

∂Φ

∂n
≡ Φn = 0, (2.3)

where n denotes the unit normal to the boundary. As initial conditions, both the
free-surface elevation and velocity potential at the initial time t = 0 are specified.

For standing waves of period T , we impose an additional condition (in lieu of an
initial condition), say:

Φs(x, 0) = Φs(x, T /2) = 0, (2.4)

corresponding to stationary conditions at t/T = 0, 0.5, . . ..
Unlike a Stokes wave which is steady in a coordinate system moving at its phase

speed, standing waves are always unsteady (in time). To investigate the instability of
standing waves, we adopt the transition matrix approach (e.g. von Kerczek & Davis
1975) using Floquet theory. The approach is standard and we outline it below for
completeness.

We write (2.2) symbolically in terms of a nonlinear operator N:

∂u
∂t

= N(u), (2.5)

where u = (ζ (x, t), Φs(x, t)). In a linear stability analysis, we write u as the sum of a
base standing wave u0, satisfying (1)–(4); and a small perturbation u′, which satisfies
(1) and (3) only:

u(x, t) = u0(x, t) + u′(x, t). (2.6)

Substituting (2.6) into (2.5) then gives:

∂u′

∂t
= L(u′), (2.7)
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where L is a time-periodic linearized (variable-coefficient) operator given by the
Jacobian of N with respect to u (evaluated at u0).

For a disturbance with N degrees of freedom, we express the solution of (2.7) as a
combination of N linearly independent solutions u′

i , i = 1, . . . , N:

u′ =

N∑
i=1

γiu′
i , (2.8)

where the coefficients γi , i = 1, . . . , N , are obtained from the initial condition for u′.
Using separation of variables, we write:

u′
i(x, t) =

N∑
j=1

µij (t)ψj (x), (2.9)

where ψj (x), j = 1, . . . , N , are spatial basis functions and µij , i, j = 1, . . . , N , are
the time-dependent modal amplitudes.

Substituting (2.8) and (2.9) into (2.7), we obtain an equation involving the N ×
N coefficient matrix U = [µij ]. Following standard Floquet theory (Coddington &
Levinson 1955), we write:

U(t) = P(t) exp(Ct), (2.10)

where the N × N matrices P and C are, respectively, time-periodic and time-
independent. The instability of the flow depends on the eigenvalues λj (j = 1, . . . , N)
of C: the flow is stable if Re(λj ) � 0, for all j = 1, . . . , N; and unstable if Re(λj ) > 0,
for any j = 1, . . . , N (the unstable mode is the eigenvector corresponding to λj with
frequency Im(λj )).

It is difficult to obtain C analytically, and we generally resort to a numerical
determination from (2.7) of the so-called transition matrix Q ≡ exp(CT ). In terms of
the eigenvalues σj , j = 1, . . . , N of Q, the eigenvalues of C are:

λj =
log σj

T
, j = 1, . . . , N. (2.11)

In practice, given a base flow u0, we obtain the N × N transition matrix Q ≡ [qij ] by
numerically integrating (2.5) with the initial condition:

ui(x, 0) = u0(x, 0) + u′
i(x, 0) = u0(x, 0) + δψi(x), δ � 1, i = 1, . . . , N, (2.12)

to obtain ui(x, T ) and hence u′
i(x, T ) (from (6) with u0(x, T ) = u0(x, 0)). Upon using

(2.9), we obtain the modal amplitudes µij of u′
i(x, T ). The process is repeated for

each i = 1, . . . , N . The elements of Q are:

qij = µij (T )/δ, i, j = 1, . . . , N. (2.13)

The key to the instability analysis above is the accurate (numerical) evaluation
of u′(x, T ) = u(x, T ) − u0. Hence, two high-accuracy computational capabilities are
required: (i) the determination of nonlinear base standing waves u0 satisfying (2.1)–
(2.4); and (ii) the integration in time of the nonlinear initial-boundary-value problem
(2.1)–(2.3) to obtain u(x, T ) given u(x, 0). In this study, we develop an efficient and
highly accurate approach based on a high-order spectral element (HOSE) method to
accomplish both (i) and (ii).
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3. The high-order spectral element (HOSE) method
We seek to solve numerically the evolution of large-amplitude waves in a basin

described by the initial boundary-value problem (2.1)–(2.3) plus a certain initial or
standing-wave condition (e.g. (2.12) or (2.4)). In the time domain, at each time step,
the solution procedure generally consists of two basic steps: (i) given the free-surface
elevation ζ and potential Φs at time t , solve the nonlinear boundary-value problem
of Φ ((2.1) and (2.3)) to obtain the free-surface velocity Φs

z (t); and (ii) given Φs
z (t),

integrate the evolution equation, (2.2), forward in time to obtain ζ (t + �t) and
Φs(t + �t) at new time t + �t; and the process is repeated. Of the two steps, the
computational effort (and hence the resolution) is controlled by step (i) which involves
the effects of free-surface nonlinearity and a free-surface domain intersected by the
walls of the basin.

A powerful scheme for the simulation of nonlinear surface wave dynamics
(for simple free-surface geometry) is the high-order spectral (HOS) method
(Dommermuth & Yue 1987). HOS uses a pseudospectral approach, employs global
spectral basis functions (wave modes) to represent the wave field, and accounts for
their interactions up to high-order M in the wave steepness. HOS obtains exponential
convergence with respect to the number of spectral modes N and the order M .
In addition, with the use of the fast transform technique bridging the spectral and
physical domains, the requisite computational effort of HOS is linearly proportional
to N and M . The accuracy and efficiency of HOS allow it to be used for high-
resolution computational studies of nonlinear wave–wave and wave–body/bottom
interaction mechanisms, for example, long–short wave interactions (Zhang, Hong &
Yue 1993), resonant wave interactions with bottom ripples (Liu & Yue 1998), and
wave interactions with submerged bodies (Liu, et al. 1992; Zhu et al. 1999). Owing to
the use of global basis functions, however, the application of HOS has been limited
to problems with relatively simple boundaries. Direct extension of HOS to problems
involving complex boundaries and a surface-piercing wall has not been achieved
because of the difficulty in finding appropriate global basis functions, and the poor
conditioning of the resulting system (associated with the use of larger numbers say
of Chebyshev polynomial modes, see e.g. Canuto et al. 1988).

To overcome these difficulties and to retain the merits of HOS, we develop here
a high-order spectral element (HOSE) method which is based on the idea of HOS
but is now applicable to general nonlinear wave–body problems. Instead of global
spectral expansions, in HOSE, we divide the boundary domain into elements and
apply spectral expansions over each element using local basis functions. Since global
fast transform techniques can no longer be used, the computational effort is increased,
but the exponential convergence with respect to the total number of spectral modes
(for fixed number of elements) and the interaction order is retained. Significantly,
HOSE is useful to problems in complex domains involving surface-piercing bodies.

The formulation and implementation of HOSE are outlined in Appendix A. The
accuracy and performance of HOSE have been established through extensive and
systematic convergence tests (Zhu 2000). We present here the representative results
for the case of nonlinear (standing) waves in a circular tank.

To validate the HOSE method, we show below its convergence with respect to
the number of free-surface elements, NFE; the number of Chebyshev modes, NFr ,
and the number of Fourier modes, NFθ , within each element; and the number
of Fourier/Chebyshev modes employed on the wall and the bottom Nwθ/Nwz and
Nbθ/Nbr , respectively. Additional convergence results are also shown for the order of
the HOSE expansion M , and the time step �t .
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NFE/NFr 4 8 16

1 7.60 × 10−1 1.01 × 10−1 1.10 × 10−4

2 1.04 × 10−1 5.93 × 10−4 3.28 × 10−6

3 4.04 × 10−2 3.83 × 10−5 ∗
4 1.27 × 10−2 3.65 × 10−6 ∗
8 5.09 × 10−4 ∗ ∗

Table 1. Convergence of the normalized maximum error of the vertical velocity on the mean
free surface of the standing wave (with wavenumber k3,4 and amplitude A/R = 0.05) in
a circular tank (h/R = 0.5) with respect to the number of free-surface elements NFE and
the number of free-surface Chebyshev modes NFr . The symbol ∗ indicates the error to be
smaller than 10−6 and affected by machine precision limitations. (NFθ = Nwθ = Nbθ = 16,
Nwz = Nbr = 16.)

First, we show the convergence of the HOSE boundary-value solver itself. To do
that, we use the analytic solution of linear standing waves in a circular tank as the
benchmark solution:

Φ(r, θ, z, t) =
A

ω�,ν

Jν(k�,νr)
cosh k�,ν(z + h)

cosh k�,νh
cos(�θ) cos(ω�,νt), (3.1)

where A denotes the wave amplitude, � and ν are non-negative integers representing
the wavenumbers in the azimuthal and radial directions, respectively, and Jν is the
νth-order Bessel function of the first kind. In (3.1), the (linear) frequency ω�,ν is related
to the wavenumber k�,ν by the linear dispersion relation: ω2

�,ν = gk�,ν tanh(k�,νh), where
k�,ν is the root of the equation

J ′
ν(k�,νR) = 0, � = 0, 1, . . . , ν = 1, 2, . . . . (3.2)

We specify the velocity potential on the mean free surface S̄F using (3.1) (say at
t = 0), solve for the vertical velocity Φz on S̄F , and compare this to analytic value.
For illustration, we consider the standing wave k3,4 with amplitude A/R = 0.05 in a
tank with h/R = 0.5. Table 1 shows the maximum error of Φz on S̄F . It is computed
with fixed numbers of Fourier modes (in the azimuthal direction) on the free surface
(NFθ = 16) and the sidewall and bottom of the tank (Nwθ = Nbθ = 16), and numbers
of Chebyshev modes on the sidewall and bottom of the tank (Nwz = Nbr = 16),
but varying the number of free-surface elements NFE and the number of free-
surface Chebyshev modes NFr . As expected, for fixed (and sufficient) NFE , we observe
exponential convergence with NFr ; while for fixed NFr , rapid convergence with
NFE is obtained. (For a detailed description of these numerical parameters, see
Appendix A.3).

Table 2 shows similar convergence test results obtained by varying Nwz and Nbr

with fixed NFE = NFr = 8 and NFθ = Nwθ = Nbθ = 16. For fixed (and sufficient) Nbr ,
exponential convergence with Nwz is again obtained. For a fixed Nwz, on the other
hand, the results do not further converge with increasing Nbr since, for this relatively
deep (h/R = 0.5) case, further resolution on the tank bottom has little effect on the
free-surface velocity we consider.

We now consider the convergence of HOSE with the interaction order M , as well
as with respect to the time integration. To do this, we address a problem involving
nonlinear time evolution. We choose the problem of determining the finite-amplitude
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Nbr/Nwz 4 8 12

4 5.36 × 10−3 1.91 × 10−5 1.15 × 10−6

8 5.35 × 10−3 2.06 × 10−5 1.21 × 10−6

16 5.35 × 10−3 2.05 × 10−5 1.22 × 10−6

Table 2. Convergence of the normalized maximum error of the vertical velocity on the mean
free surface of the standing wave (with wavenumber k3,4 and amplitude A/R = 0.05) in a
circular tank (h/R = 0.5) with respect to the numbers of Chebyshev modes on the sidewall
and bottom of the tank Nwz and Nbr . (NFE = NFr = 8 and NFθ = Nwθ = Nbθ = 16.)

M/NFE 1 2 4 8

1 1.00000 1.00000 1.00000 1.00000
2 1.04388 0.99953 0.99938 0.99938
3 1.04387 0.99897 0.99881 0.99881
4 1.04387 0.99896 0.99880 0.99880

Table 3. Nonlinear frequency Ω0,6 (normalized by its linearized value ω0,6) of a nonlinear
axisymmetric standing wave with wavenumber k0,6 in a circular tank, obtained using
varying numbers of free-surface elements NFE and order M . (NFr = 8, NFθ = Nwθ = Nbθ = 16,
Nwz = Nbr = 16, T/�t = 128, h/R = 0.5.)

standing waves in a circular tank (the procedure for finding the nonlinear standing
wave configuration using HOSE computations is given in Appendix B).

For reference, we denote the nonlinear frequency of a nonlinear standing wave in
a circular tank with wavenumber k�,ν by Ω�,ν . Since Ω�,ν has a direct dependence
on the wave amplitude (see e.g. Tsai & Yue 1987), we here fix the amplitude of the
standing wave: A ≡ (ζmax − ζmin)/2 = 0.016R, and consider the convergence of Ω�,ν

with respect to M and the time step �t of the simulations. Table 3 shows the case for
Ω0,6 with NFr = 8, NFθ = Nwθ = Nbθ = 16, Nwz = Nbr = 16, and T/�t = 128. When
the nonlinear effects are included (M > 1), the value of of Ω0,6 is, as known, smaller
than that for the linear standing wave (M = 1): ω0,6 = [gk0,6 tanh(k0,6h)]1/2. For fixed
NFE , we obtain exponential convergence for Ω0,6 with respect to M; while for a fixed
M , rapid convergence with NFE is achieved.

For the time integration of the evolution equations in HOSE, we employ a fourth-
order Runge–Kutta scheme. The error in the time integration for T ∼ 1 is thus
expected to be O(�t/T )4 (e.g. Dommermuth & Yue 1987). Table 4 displays the
convergence of Ω0,6 with respect to T/�t and the order M . For these computations, the
other parameters are fixed: NFE = NFr =8, NFθ =Nwθ =Nbθ =16, and Nwz = Nbr = 16.
For these typical computational parameters, and T/�t = 128, Ω0,6 converges to at
least five decimal places at any order M .

We show also the convergence with respect to standing-wave profiles. Figure 1
plots the radial profile of the axisymmetric standing wave k0,6 at t = 0 (corresponding
to maximum elevation of this standing-wave profile at the origin). The results are
obtained with different NFE and NFr but fixed M = 3, NFθ = Nwθ = Nbθ = 16,
Nwz = Nbr = 16, and T/�t = 128. The results converge rapidly with increasing NFE

and NFr . In particular, for NFE = 4, the profiles obtained using NFr = 8 and 16 are
graphically indistinguishable.
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M/T/�t 16 32 64 128

1 1.00000 1.00000 1.00000 1.00000
2 0.99919 0.99936 0.99938 0.99938
3 0.99861 0.99879 0.99881 0.99881
4 0.99861 0.99879 0.99880 0.99880

Table 4. Nonlinear frequency Ω0,6 (normalized by its linearized value ω0,6) of a nonlinear
axisymmetric standing wave with wavenumber k0,6 in a circular tank, obtained using varying
time step sizes T/�t and the order M . (NFE = NFr = 8, NFθ = Nwθ = Nbθ = 16, Nwz =
Nbr = 16, h/R = 0.5.)

0.012

0.009

0.006

0.003

0

–0.003

–0.006
0 0.5 1.0

r/R

ζ

R

Figure 1. Free-surface profiles of nonlinear axisymmetric standing wave k0,6 in a circular
tank at t = 0 (corresponding to maximum elevation of this standing wave profile at the
origin) obtained with: · · ·, (NFE,NFr ) = (2, 4); – – –, (4, 4); —·—, (4, 8); —, (4, 16). The wave
amplitude A/R = 0.01. (M = 3, NFθ = Nwθ = Nbθ = 16, Nwz = Nbr = 16, T/�t = 128,
h/R = 0.5.)

Figure 2 shows similar convergence results of the free-surface profile for the
non-axisymmetric standing wave k2,5 at t = 0. Plotted are the radial profiles along
θ =0 and azimuthal profiles on the wall (at r = R). They are computed with
varying NFr but fixed M = 3, NFE = 4, NFθ = Nwθ = Nbθ = 16, Nwz =Nbr =32 and
T/�t =128. The wave profiles are seen to converge rapidly with increasing NFr .
As in the case in figure 1, the wave profiles obtained with NFr = 8 and 16 are
graphically indistinguishable. Note that the profiles (with M = 3) in figures 1 and 2
converge with the corresponding results obtained with M = 4 to at least five decimal
places.

As a final validation of this problem, we compare the present HOSE result (with
M = 3) for Ω0,2 with the fully nonlinear result of Tsai & Yue (1987). The comparison
is plotted in figure 3 for a broad range of standing-wave amplitudes (up to A/R ∼ 0.2;
the value for the maximum steepness of this type of wave is not known). Excellent
agreement (to within 1% for 1 − Ω0,2/ω0,2) between the present result (converged to
five decimal places with M = 3) and that of Tsai & Yue (1987) is obtained for the
range shown.
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4. Numerical results
We apply the transition matrix method using HOSE computations to study the two-

and three-dimensional instability of finite-amplitude standing waves in rectangular
and circular tanks.

4.1. Instability of plane standing waves

We consider the stability of finite-amplitude plane standing waves to small two- and
three-dimensional disturbances. The two-dimensional instability problem has been
investigated by MR. Pierce & Knobloch (1994) considered the three-dimensional
instability problem, but restricted their attention to long modulational transverse
disturbances. Since the present work is based on direct HOSE computations, we
consider only finite wavelength disturbances, and our findings cannot be compared
with their results.

As a validation, we first revisit the two-dimensional case, comparing our results to
those of MR for small to moderate wave steepness. We then study the more general
three-dimensional instability problem.

4.1.1. Two-dimensional instability

As in MR, we consider here the deep-water case. We choose a computational
domain containing 8 fundamental standing waves, wavenumber k, and consider
two-dimensional perturbations given by Fourier series with components eipkx/8, p =
0, 1, . . . , N . Note that the choice of computational domain allows us to consider
disturbances with wavelength up to eight times that of the base standing wave. In
the HOSE simulations, we use M = 3 and 5, NFE = 1, NF = 512 (64 Fourier spectral
modes per fundamental wavelength), T/�t = 128 and N = 32. These computational
parameters obtain results for growth rates of the perturbation modes convergent to
the fourth decimal place.

Following § 2, we obtain the eigenvalues λj and eigenvectors V j = vj
p , j, p =

0, 1, . . . , N , of the problem. For convenience, we label these eigenmodes by
the number(s) of their dominant Fourier component(s), for example, mode ‘(p)’
corresponds to that mode (j ) wherein the pth component |vj

p| is dominant (maximum).
In many cases, V j contains a pair of equally dominant components, say, p1, p2, in
which case it is more meaningful to refer to this mode as ‘(p1, p2)’.

Figure 4 plots, as a function of wave steepness kA of the base standing wave,
eigen-frequencies Im(λ) of the transition matrix and the growth rates Re(λ) of the
unstable modes. The present HOSE predictions (M = 3 and 5) are compared to those
of MR. The comparisons are good for small to moderate values of kA <∼ 0.25. (As
a reference, according to MR, the possible maximum steepness of a plane standing
wave is (kA)max � 0.62). As kA increases further, HOSE predictions begin to deviate
from the fully nonlinear MR results and more so for M = 3 than M = 5, as
expected. Figure 4 provides a guideline for the use of HOSE in this section (in
terms of kA and M). Comparing figures 4(a) and 4(b), we see that the occurrence of
instability corresponds to the coalescence of pairs of eigenmodes. For instance, the
eigen-frequencies associated with modes (7) and (9) converge into a single value at
kA ≈ 0.092, resulting in an unstable mode (7, 9).

From figure 4, we see that the unstable modes consist of sideband and
superharmonic disturbances, (7, 9) and (6, 10), and (14, 22), respectively. For (14, 22),
stability is reestablished at kA � 0.28. From MR, it is known that (7, 9) and (6, 10)
eventually also restabilize, but at larger kA beyond the scope of the present simulation.
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Figure 4. (a) Eigen-frequency Im(λ) and (b) growth rate Re(λ) of two-dimensional
disturbances on a plane standing wave as a function of wave steepness kA. The eigenmodes
are labelled by their dominant Fourier component(s). The results plotted are the present
HOSE results with M = 3 (· · ·) and M = 5 (—) and the fully nonlinear results of Mercer
& Roberts (1992) (– – –). (The HOSE results with M = 3 and M = 5 in (a) are graphically
indistinguishable.)

4.1.2. Three-dimensional instability

We now turn to the instability of plane standing waves to three-dimensional
disturbances. We consider a base plane standing wave of wavenumber k (in the x-
direction), and introduce three-dimensional disturbances described by Fourier series
with components eik(px/L+qy/W), p, q, = 0, 1, . . .. To ensure double spatial periodicity
(in the x- and y-directions) for both the base flow and disturbances, L must be
rational while W is arbitrary.

We conduct systematic computations (with M = 5, NFE = 1, NF = 256 × 256,
and T/�t = 128) for the range of kA< ∼ 0.3, which is about 50% of the maximum
steepness of plane standing waves (e.g. MR). From these computations, we find
that a plane standing wave is unstable to three-dimensional perturbations for any
(rational) L. In particular, the unstable three-dimensional disturbance (q 	= 0) contains
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Figure 6. Growth rate of a transverse (α = 90◦) unstable mode on a plane standing waves
of · · ·, wave steepness kA = 0.10; – – –, 0.15; —·—, 0.20; and —, 0.30.

a dominant Fourier component satisfying k′/k ≡ ((p/L)2 +(q/W)2)1/2 � 1. The crest
line of this mode is oblique to the base standing wave at an angle α = tan−1(qL/pW).

For example, for L = 4, the plane standing wave is unstable to the three-
dimensional disturbances with W, p, q = 4/71/2, 3, 1; 2/31/2, 2, 1; 4/151/2, 1, 1;
and 4, 0, 4, which correspond to crest angles α = 41◦, 60◦, 75◦ and 90◦, respectively.
Figure 5 shows the growth rate of these modes in the neighbourhood of the critical
point k′/k = 1. The wave steepness of the base plane standing wave is kA = 0.20.
The maximum growth rate generally obtains with k′ < k. As we shall see, this is
explained in terms of the nonlinear versus linear dispersion relationships for plane
standing waves.

To investigate the dependence of the instability on kA, we plot in figure 6 the
growth rates of the transverse (α = 90◦) unstable mode for different values of kA.
This mode is unstable near k′/k = 1 for any kA. From the figure, we see that both
the region of instability and the maximum value of the growth rate increase as kA

increases.
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To better understand the dependence on kA of the size of the unstable region and
maximum value of the growth rate in figure 6, we plot, in figure 7(a), the upper (k+)
and lower (k−) values of k′ marking the instability region, as a function of (kA)2. The
computational results are fitted closely by linear relations between (k± − k)/k and
(kA)2. Figure 7(b) plots the maximum growth rate also as a function of (kA)2. The
quadratic dependence on kA is again evident.

Finally, we plot the value k′ = km at which the maximum growth rate is obtained
(figure 7a). As seen from the figure, km � Ω2/g where Ω is the nonlinear frequency
of the base standing wave. This also implies that the frequency of the most unstable
mode satisfies ω′ ≡

√
k′g � Ω , i.e. the most unstable mode is the one which has the

same frequency as the base standing wave in this case.
The essential features of these three-dimensional instability results are captured in

a simple analysis. For simplicity, we consider a base flow given by the linear standing
wave solution: ζ0 = A cos(kx) cos ωt and φ0 = −(gA/ω) cos(kx) exp(kz) sin ωt; k =
ω2/g. Consider, as a special case, a disturbance mode perpendicular to the base
standing wave: ζ ′ = ζ̃ (t) cos k′y and φ′ = φ̃(t) cos k′y exp(k′z), where ζ̃ (t) denotes
the free-surface elevation of the small disturbance while φ̃(t) is the amplitude of the
associated disturbance potential. Upon substituting the total free-surface elevation
ζ = ζ0 + ζ ′ and velocity potential Φ = φ0 + φ′ into (2.2), we obtain the linearized
evolution equations for the disturbance:

ζ̃t −
[
1 + 1

2
(kA)2 cos2 ωt

]
kφ̃ = 0, φ̃t + gζ̃ = 0. (4.1)
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fundamental wave E0) during nonlinear evolution of a plane standing wave kA = 0.20 initially
disturbed by an unstable transverse perturbation (with L = 4, W = 4.04, p = 0, q = 4) for:
– – –, the fundamental standing wave; —, the transverse mode.

Combining (4.1), we obtain:

φ̃tt + gk′[1 + 1
4
(kA)2 + 1

4
(kA)2 cos 2ωt

]
φ̃ = 0. (4.2)

Upon introducing a non-dimensional time τ = 2ωt , (4.2) is rewritten in a standard
form of the Mathieu equation (e.g. Bender & Orszag 1978):

φ̃ττ + (a + 2b cos τ )φ̃ = 0, (4.3)

where a = gk′[1+(kA)2/4]/(4ω2) and b = gk′(kA)2/(8ω2). It is known that the solution
of (4.3) is unstable in the neighbourhood of a = 1/4 with growth rate proportional to
b. These correspond to k′/k = [1+(kA)2/4]−1 = 1+O(kA)2 and growth rate ∝ (kA)2.
These results from linearized analysis express the salient features of figures 6 and 7.

The three-dimensional instability we find here is consistent with the class Ia
instability of propagating short-crested waves in the standing-wave limit (Ioualalen &
Kharif 1994). An extension of their result to the two-dimensional standing-wave limit
implies the existence of the transverse instability we find. Because of the unsteadiness
of standing waves, however, general features of this instability cannot be obtained
from the quasi-steady analysis of propagating waves.

4.1.3. Long-time evolution

For progressive Stokes waves, it is known that, because of instability, long-time
simulations using model equations such as the nonlinear Schrödinger (NLS) equation
lead to recurrence (e.g. Yuen & Ferguson 1978). To see if such phenomenon might
obtain in the present case, we perform long-time HOSE simulations of a finite-
amplitude plane standing wave initially perturbed by an unstable mode. For specificity,
we consider a base flow with kA = 0.20 initially perturbed by a transverse unstable
mode with p = 0 and k′/k = q/W = 0.99. We perform HOSE simulations (with
M = 5, NFE = 1, NF = 256 × 256, T/�t = 128) up to t = 700T .

For this case, we can decompose the total (potential plus kinetic) energies of the
base standing wave and the transverse disturbance. Figure 8 plots the time variations
of these, showing a clear long-time recurrence (of period ∼ 300T ). At its maxima
(at t/T � 240 and 540), the transverse mode has an energy that exceeds that of the
longitudinal wave (corresponding to 60% of the total initial energy). Between these
maxima, the initial state is completely recovered.
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Figure 9. Snapshots of the free surface during the nonlinear evolution of a plane standing
wave kA = 0.20 initially perturbed by an unstable transverse wave (with L = 4, W = 4.04,
p = 0, q = 4).

Figure 9 shows the free-surface wave patterns at several stages of this evolution
cycle. At t = 0, the free surface is dominated by the longitudinal base standing wave.
At t = 200T , an interference pattern obtains as a result of the growing transverse
mode. At t � 250T , the energies of the two modes are comparable, resulting in a
distinct checker-board pattern. Finally, at t � 400T , the free surface returns to a
two-dimensional pattern very similar to the initial wave field.

Unlike the NLS, the present long-time predictions are not limited by cascade of
energy to increasingly higher wavenumbers. However, the effect of damping due to
viscosity in the physical problem should still be accounted for. For water waves inside
a tank, the dominant viscous effect arises from the boundary layer near the solid
boundary. The average damping rate is D ∼ ν1/2L−3/4/(ng)1/4 (e.g. Mei 1983), where
L is the characteristic length of the tank, n the number of waves in the tank, and
ν the kinematic viscosity. Using this for a single standing wave in the tank, and the
recurrence time above, we estimate that the recurrence phenomenon will be affected
by viscous damping for L < ∼ 0.5 m.

4.2. Instability of standing waves in a circular tank

We consider the three-dimensional instability of standing waves in a circular tank,
radius R and mean water depth h. For a base (large-amplitude) standing wave with
wavenumber k�,ν (azimuthal wavenumber � and radial wavenumber ν), we investigate
its stability to three-dimensional perturbations given by Fourier–Bessel series with
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components:

Jν(κ�,νr)e
i�θ , � = 0, 1, . . . ; ν = 1, 2, . . . (4.4)

Hereinafter, to avoid possible confusion, we use k for the wavenumber of the base
standing wave and κ for the wavenumber of each component of a perturbation
although numerically k�,ν = κ�,ν .

The unstable mode generally contains multiple dominant wavenumber components,
each with its own wavenumber. For plane unstable modes, we use the standard
notation, (p1, p2), to represent an unstable mode with dominant components of
wavenumbers p1 and p2. For the three-dimensional problem, each of the dominant
components in an unstable mode has a wavenumber which is two-dimensional, and
the mode might be represented by a sequence of ordered pairs {(�, ν)1, (�, ν)2, . . .},
say. To avoid the possible confusion of (�, ν) here with the (p1, p2) above, we use the
notation κ�,ν instead for the dominant wavenumber component ((�, ν)).

Hereunder, we consider separately the case of axisymmetric (� =0) and non-
axisymmetric (� > 0) base standing waves. For specificity, we set h/R = 0.5, and
in the HOSE computations, use: M = 3, NFE = 16, NFθ = Nwθ = Nbθ = 64, NFr = 8,
Nwz = Nbr = 32, and T/�t = 128.

4.2.1. Axisymmetric standing waves

We perform systematic computations for � = 0 and ν = 1, . . . for a range of base
wave steepness ε, defined as ε ≡ |∇ζ |max (at t = 0). The stability analysis results
are summed up as follows: the axisymmetric standing wave is unstable to three-
dimensional disturbances for all ν (we computed to beyond ν = 7) when ε exceeds
some threshold value εc (function of ν for a given h/R). The (most) unstable mode
contains a pair of dominant components: (κ1,ν , κ1,ν−1).

The instability here resembles that of plane standing waves (cf. § 4.1.1). In figure 10,
we present a typical result for the variation of the eigen-frequency and growth rate
as ε increases from zero to beyond εc. The result is obtained for the axisymmetric
wave k0,6. When ε < εc, the eigen-frequencies of two perturbations, with (dominant)
components κ1,5 and κ1,6, respectively, differ and the fundamental wave is stable.
When ε > εc (� 0.12 in this case), the eigen-frequencies of these two modes coalesce,
and the base wave becomes unstable (indicated by a positive growth rate in figure 10)
to the perturbation containing these as dominant components.
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Figure 11. Growth rates of the perturbation containing (κ1,ν , κ1,ν−1) for axisymmetric standing
waves k0,ν in a circular tank (h/R = 0.5) as a function of the fundamental wave steepness ε.
The plotted curves are for: —, ν = 3; – – –, ν = 4; —·—, ν = 5; · · ·, ν = 6; —· ·—, ν = 7.

Figure 12. Region of (in)stability for axisymmetric standing waves k0,ν as a function of ν
and fundamental wave steepness ε. �, stable; �, unstable standing waves.

Similar results obtain for other values of ν. Figure 11 plots the growth rates for
ν = 3 to 7 as a function ε. For a given ν, we see that the growth rate becomes positive
and increases monotonically with ε beyond some critical steepness εc. The value of
εc depends on ν and generally decreases as ν increases.

Figure 12 plots the region of instability in the (ε, ν)-plane for axisymmetric base
standing waves. εc decreases as the radial wavenumber ν increases resulting in a
upward concave stability boundary. This feature bears a resemblance to a different
but related problem in which axisymmetric waves propagating radially from a heaving
hemisphere develop an instability resulting in a distinct three-dimensional wave
pattern (Tatsuno, Inoue, & Okabe 1969).

4.2.2. Non-axisymmetric waves

Extensive computations and stability analyses are performed also for non-
axisymmetric base standing waves for varying �, ν and ε. Similar to axisymmetric
standing waves, non-axisymmetric standing waves with azimuthal mode number
� � 1 (we calculated them to beyond � = 3) are found to be unstable to three-
dimensional perturbations beyond a certain critical base wave steepness ε > εc, where
εc depends on � and ν (for given h/R). For � = 1, the unstable perturbation is
a single mode containing a pair of dominant Fourier–Bessel components: κ0,ν and
κ0,ν+1. For � > 1, the situation is more complex and involves two unstable modes with
pairs of dominant Fourier–Bessel components: (κ�−1,ν+1, κ�+1,ν−1) and (κ�−1,ν, κ�+1,ν),
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Figure 13. —, growth rate Re(λ) and – – –, eigen-frequency Im(λ) of three-dimensional
perturbations (labelled by their respective dominant components) for a non-axisymmetric
base standing wave, wavenumber k1,5, in a circular tank (h/R = 0.5) plotted as a function of
fundamental wave steepness ε.

respectively. Depending on the base wave � and ν, the values of the critical steepness
εc for these modes are generally close but not identical.

Figure 13 shows a typical � = 1 result for the case of a base standing wave with
wavenumber k1,5. The eigen-frequency and growth rate of the unstable mode are
plotted as a function of ε. The results are qualitatively similar to the axisymmetric
case: beyond a certain εc, the eigen-frequencies of two separate (stable) modes with
dominant components κ0,5 and κ0,6, respectively, coalesce forming a single unstable
mode containing these dominant components. The growth rate of this unstable
mode depends on increasing ε > εc in a non-monotonic fashion in contrast to the
axisymmetric cases (cf. figures 10 and 11). Analysing the components of the unstable
mode, it is found that, for ε > ∼ 0.17, two additional components, κ2,4 and κ2,5

(corresponding to κ�+1,ν−1 and κ�+1,ν), begin to grow in amplitude, and eventually
become co-dominant (with κ0,5 and κ0,6) for ε � 0.20.

For � > 1, the results differ qualitatively. In this case, two unstable perturbations
are found, each containing a pair of dominant components, (κ�−1,ν+1, κ�+1,ν−1) and
(κ�−1,ν, κ�+1,ν). Figure 14 shows the results, as a function of ε, for two non-axisymmetric
base standing-wave cases: k2,5 and k3,5. In each case, the two unstable modes
are plotted. For each of the modes, as ε approaches εc, instability is initiated
by the merging of the eigen-frequencies of two separate modes (with different
dominant components) to form a single unstable mode containing both the dominant
components. For each base standing wave, the critical steepnesses of the unstable
modes are generally close and the growth rate behaviours are qualitatively similar
with strong evidence of the re-establishment of stability for large ε. We note that
for the cases we consider, for given ν, the critical steepness εc increases with � (cf.
figures 13 and 14).

To help visualize the features of the instabilities, in figure 15, we show the
instantaneous free-surface patterns for three sample cases. The figure shows, for
example, how an initially axisymmetric base standing wave (wavenumber k0,4) loses its
axisymmetry as the dominant unstable mode (with wavenumber components κ1,3, κ1,4)
develops, case I. Similarly, a non-axisymmetric base standing wave (wavenumber k1,5)
will, depending on its initial steepness (see figure 13), develop into an axisymmetric
standing wave (with dominant components κ0,5, κ0,6), case II; or a non-axisymmetric
standing wave with higher azimuthal wavenumber (with dominant components
κ2,4, κ2,5), case III.
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Figure 14. —, growth rate Re(λ) and – – –, eigen-frequency Im(λ) of three-dimensional
perturbations (labelled by their dominant components) for non-axisymmetric base standing
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5. Mechanism of the standing-wave instability
For propagating (Stokes) waves, it is known that the class I and class II instabilities

are results of (third-order) quartet and (fourth-order) quintet resonant interactions
between the fundamental wave and the unstable perturbations (Philips 1960; McLean
1982). Such resonances have been shown, for example, in the dynamics of beams
and plates (e.g. Nayfeh & Mook 1979; Kyoyul & Nayfeh 1996). In this section,
we show that the standing-wave instabilities in § § 4.1 and 4.2 are also results of
high-order (quartet and quintet) resonances between the fundamental standing wave
and its unstable modes. The resonance condition here is, however, more similar to
the nonlinear resonant interactions or bifurcations that occur in a parametrically
resonated basin (see e.g. Bridges 1987); and different from that for propagating waves
in that only a frequency relationship, but no wavenumber condition, is involved.

5.1. Plane base standing waves

Let ωp , Ωp be the linear and nonlinear frequencies, respectively, of a plane standing
wave of wavenumber p. Figure 16 plots Ω8 (obtained numerically) as a function of
kA, compared to select combinations of linear frequencies ωp . As kA increases, Ω8

intersects successively (ω7 + ω9)/2, (ω14 + ω22)/3 and (ω6 + ω10)/2. The conditions for
internal resonances obtain at these frequency crossing points: quartet resonances for
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(a)                                                         (b)

I

II

III

Figure 15. (a) Instantaneous free-surface elevation of the base standing waves, and (b) the
corresponding result, after significant development of the (dominant) unstable perturbations.
The base flow (k) and perturbation (κ) wavenumbers for the sample cases are respectively: I,
k0,4 and κ1,3, κ1,4; II, k1,5 and κ0,5, κ0,6; III k1,5 and κ2,4, κ2,5.

Ω8 (counted twice), and the mode pairs ω7 and ω9, and ω6 and ω10, respectively;
and quintet resonance for Ω8 (counted thrice) and the mode pair ω14 and ω22. These
correspond directly to the results of figure 4. Since quintet resonance is one order
higher in wave steepness than quartet resonance, we expect that the former would have
a smaller growth rate. This is also consistent with the numerical findings (figure 4b).

For three-dimensional instability, similar internal resonances obtain. The instability
we find in § 4.1.2 (under the condition Ωp � ωp) corresponds simply to quartet
resonances satisfying the conditions: Ωp � 2ωp −ωp , 2Ωp −ωp � ωp and 2Ωp −Ωp �
ωp .

5.2. Standing waves in a circular tank

Let ω�,ν , Ω�,ν be the linear and nonlinear frequencies, respectively, of a standing
wave in a circular tank with wavenumber k�,ν . For moderate to deep tank depth, ω�,ν
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Figure 16. Nonlinear frequency Ω8 of the plane standing wave k8 as a function of the wave
steepness kA, plotted with the linear frequency combinations (ω7 + ω9)/2, (ω6 + ω10)/2 and
(ω14 + ω22)/3. The plotted frequencies are normalized by ω1.
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Figure 17. Nonlinear frequency Ω0,ν of an axisymmetric standing wave in a circular tank
(h/R = 0.5) of wavenumber k0,ν as a function of wave steepness ε, plotted against the linear
frequency combination (ω1,ν−1 + ω1,ν)/2. For each ν, —, ν = 4, – – –, 5, —·—, 6, and · · ·, 7,
the values are normalized by ω0,ν (curves corresponding to different ν actually do not cross).

are shown to satisfy the approximate relationships (using the asymptotic property of
Bessel functions of large orders, e.g. Abramowitz & Stegun 1972):

2ω0,ν � ω1,ν + ω1,ν−1, (5.1)

2ω�,ν � ω�−1,ν + ω�−1,ν+1, (5.2)

2ω�,ν � ω�+1,ν−1 + ω�−1,ν, (5.3)

2ω�,ν � ω�−1,ν+1 + ω�+1,ν−1, (5.4)

2ω�,ν � ω�−1,ν + ω�+1,ν, (5.5)

for �, ν = 1, 2, . . .. For limited steepness of the base standing wave, Ω�,ν and ω�,ν

differ only slightly (e.g. figure 3). Thus, we can use the above equations to deduce the
combination of wave modes among which quartet resonance might occur.

Figure 17 plots Ω0,ν (obtained numerically) for ν = 4, 5, 6, 7 as a function of ε. For
ν = 7, 6, 5, these Ω0,ν curves cross the linear-frequency combinations (ω1,ν−1 +ω1,ν)/2
(see (5.1)) at ε ∼= 0.20, 0.22, 0.26, respectively. Thus, the conditions for internal
quartet resonances, and hence instability, obtain at these points for the associated
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Figure 18. —, nonlinear frequency Ω�,5 of a non-axisymmetric standing wave in a circular
tank (h/R = 0.5) of wavenumber k�,5 with (a) � = 1, (b) 2 and (c) 3 as a function of wave
steepness ε. Also plotted are the linear frequency combinations – – –, (ω�−1,5 + ω�−1,6)/2; · · ·,
(ω�−1,5 + ω�+1,5)/2; —· ·—, (ω�−1,6 + ω�+1,4)/2; —·—, (ω�+1,4 + ω�+1,5)/2. All frequencies are
normalized by ω�,5.

perturbations containing the dominant components κ1,ν−1 and κ1,ν . This is precisely
the finding in § 4.2.1.

Similar frequency-crossings exist for non-axisymmetric standing waves k�,ν (� � 1).
In figure 18, we plot the nonlinear frequencies Ω�,5, � = 1, 2, 3 as functions of ε
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together with the four linear-frequency combinations specified by the right-hand sides
of (5.2)–(5.5). As ε increases, frequency crossings between Ω and combinations of ω

occur corresponding to internal (quartet) resonance instabilities. In the range of ε

considered, Ω1,5 crosses (ω0,5 +ω0,6)/2 (only), while Ω�,5, � = 2, 3, cross both (ω�−1,6 +
ω�+1,4)/2 and (ω�−1,5 + ω�+1,5)/2. These linear frequency combinations correspond
directly to the dominant components of the unstable perturbations we found in
§ 4.2.2.

By considering the (nonlinear) frequencies of standing waves and the way they
combine, this simple analysis shows that the instabilities of standing waves we
found in § 4 are a direct consequence of high-order internal resonances. The
frequency conditions for such resonances identify the dominant component(s) of
the corresponding unstable modes. The base standing-wave amplitudes/steepnesses
at which such conditions obtain provide a crude estimate for the threshold values
above which such instabilities occur.

Finally, we comment on an interesting consequence of the instability we find to the
transition from axisymmetry to non-axisymmetry of standing waves in a circular tank.
From § 4.2, we see that an axisymmetric standing wave k0,ν is unstable to perturbations
containing wavenumber components κ1,ν−1 and κ1,ν . As modes with these components
grow in amplitude beyond a threshold value, they themselves become unstable to � = 2
perturbations. This process is repeated resulting in increasingly large � modes: from
κ�,ν to κ�+1,ν−1 and κ�+1,ν (as well as to κ�−1,ν+1, κ�+1,ν−1)). With sufficient amplitude
(and time), this mechanism of energy cascade to increasing azimuthal (and radial)
mode numbers could result in highly three-dimensional wave patterns. This offers
a possible explanation for the experimental observation of Gollub & Meyer (1983)
in which the surface waves in a vertically oscillated circular tank change from
axisymmetric to non-axisymmetric as the oscillation amplitude exceeds a critical
value.

6. Conclusions
The three-dimensional instability of nonlinear two- and three-dimensional standing

surface waves is investigated numerically based on the transition matrix method. An
efficient high-order spectral element (HOSE) method is developed and applied to this
analysis.

Two classes of base standing waves are considered: (i) plane standing waves in
deep water; and (ii) three-dimensional standing waves in a circular basin. For the
former, both two- and three-dimensional instabilities are found. For two-dimensional
instability, we obtain quantitative comparisons with the fully nonlinear results of
Mercer & Roberts (1992) for the frequency and growth rate of the unstable modes.
When three-dimensional perturbations are considered, we find that a plane standing
wave is unstable to modes, at arbitrary oblique angles, satisfying a frequency condition.

For standing waves in a circular tank, we find that there is a threshold wave
amplitude beyond which the base wave (of any azimuthal and radial mode numbers)
is unstable to (three-dimensional) perturbations. The mode numbers for the unstable
modes are identified and are shown to satisfy a simple relation to those of the base
wave.

We further show that the instabilities we find are direct consequences of
quartet internal resonances, and offer a possible explanation for the transition of
standing waves in circular tanks from axisymmetry to non-axisymmetry observed in
experiments.
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Finally, it should be noted that the present HOSE approach is limited by
convergence to moderate wave steepness. In many cases, initial instabilities may
lead to steep, even breaking, waves. The dynamics of these very steep standing waves
(e.g. Jian, Perlin & Schultz 1998; Longuet-Higgins & Dommermuth 2001; Longuet-
Higgins & Drazen 2002) is beyond the validity of HOSE and the scope of this
study.

This research is supported financially by grants from the office of Naval Research
whose sponsorship is gratefully acknowledged.

Appendix A. Formulation and implementation of the high-order
spectral-element method

For completeness, we present here an outline of the formulation and implementation
of the high-order spectral element (HOSE) method for the computation of nonlinear
wave dynamics. The details are found in Zhu (2000).

A.1. High-order expansions

In HOSE, as in HOS, we expand Φ in a perturbation series with respect to the small
wave steepness parameter ε up to order M:

Φ(r, t) =

M∑
m=1

Φ (m)(r, t), (A 1)

where r = (x, y, z), ()(m) denotes a quantity of the order O(εm). Expanding the free-
surface potential Φs in Taylor series about the mean free surface S̄F (i.e. z = 0) and
collecting terms in each order O(εm), we obtain a sequence of Dirichlet boundary
conditions for Φ (m) on S̄F :

Φ (m) = f (m) on S̄F , (A 2)

where f (1)(x, t) = Φs and

f (m)(x, t) = −
m−1∑
�=1

ζ �

�!

∂�

∂z�
Φ (m−�)(x, 0, t), m = 2, 3, . . . , M.

On the fixed body surface S̄B (for body with small motions, a high-order treatment
similar to that for the free-surface should be employed, see Zhu et al. 1999), we have
a sequence of Neumann boundary conditions for Φ (m), m = 1, . . . , M:

Φ (m)
n = 0 on S̄B. (A 3)

With these expansions, the original nonlinear boundary-value problem for Φ is
decomposed into a sequence of linear boundary-value problems for Φ (m), m =
1, . . . , M , consisting of the Laplace equation (∇2Φ (m) = 0) inside the mean fluid
domain, Dirichlet boundary condition (A 2) on S̄F , and Neumann boundary condition
(A 3) on S̄B .

The sequence of linear problems for Φ (m), m = 1, 2, . . . , M are now solved in order
starting from m = 1. The immediate interest is the surface vertical velocity Φs

z :

Φs
z ≡ Φz(x, ζ, t) =

M∑
m=1

M−m∑
�=0

ζ �

�!

∂�+1

∂z�+1
Φ (m)(x, 0, t). (A 4)
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Substituting Φs
z into (2.2), the free-surface elevation ζ and potential Φs are updated

by explicit time integration (in this work we use a fourth-order Runge–Kutta scheme).

A.2. Spectral-element approach for the boundary-value solution

To solve the boundary-value problem for Φ (m), m = 1, 2, . . . , M , we divide the
boundary S̄F and S̄B , respectively, into NFE and NBE piecewise smooth elements.
On each element, we expand the potential Φ (m) and normal velocity Φ (m)

n in spectral
series:

Φ (m)(r, t) =

∞∑
�=1

αF
j�(t)Ψ

F
j�(r), Φ (m)

n (r, t) =

∞∑
�=1

βF
j�(t)Θ

F
j�(r), (A 5)

for r ∈ S̄Fj
, j = 1, . . . , NFE and

Φ (m)(r, t) =

∞∑
�=1

αB
j�(t)Ψ

B
j�(r), Φ (m)

n (r, t) =

∞∑
�=1

βB
j�(t)Θ

B
j�(r), (A 6)

for r ∈ S̄Bj
, j = 1, . . . , NBE . In the above, Ψ F

j� (ΘF
j�) and Ψ B

j� (ΘB
j�) are the �th spectral

basis functions for Φ (m) (Φ (m)
n ) on the j th free-surface and body elements, respectively;

αF
j� (βF

j�) and αB
j� (βB

j�) are the corresponding modal amplitudes.

We now apply Green’s theorem to Φ (m) and the appropriate free-space (Rankine)
Green function, and upon truncating the expansions (A 5) and (A 6) to finite numbers
of free-surface (NFM ) and body (NBM ) spectral modes (per element), we obtain the
following linear system of equations:

NBE∑
j=1

NBM∑
�=1

αB
j�(t)C

BF
j� (r) −

NFE∑
j=1

NFM∑
�=1

βF
j�(t)D

FF
j� (r) = RF (r, t), r ∈ S̄Fj

(A 7)

and

NBE∑
j=1

NBM∑
�=1

αB
j�(t)C

BB
j� (r) −

NFE∑
j=1

NFM∑
�=1

βF
j�(t)D

FB
j� (r) = RB(r, t), r ∈ S̄Bj

. (A 8)

The forcing terms RF and RB are known:

RF (r, t) = −
NFE∑
j=1

NFM∑
�=1

αF
j�(t)C

FF
j� (r) +

NBE∑
j=1

NBM∑
�=1

βB
j�(t)D

BF
j� (r) (A 9)

and

RB(r, t) = −
NFE∑
j=1

NFM∑
�=1

αF
j�(t)C

FB
j� (r) +

NBE∑
j=1

NBM∑
�=1

βB
j�(t)D

BB
j� (r). (A 10)

In the above, the influence coefficients are known and given by integrals over the
boundary elements in terms of the free-surface and body basis functions and the
Green function. From (A 7) and (A 8), the unknown modal amplitudes αB

j� and βF
j�

are solved.

A.3. Choice of spectral basis functions

Unlike in HOS, the HOSE local basis functions (Ψ and Θ) in (A 5) and (A 6) are not
required to satisfy specific essential boundary conditions. While there is significant
flexibility in the choice of these functions, a desirable requirement is the exponential
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convergence of the expansions for the element. Thus, for example, Fourier expansions
are used when boundary conditions are periodic, but are inappropriate when non-
periodic boundary conditions apply.

For the two-dimensional plane standing wave in a rectangular basin, the lateral
boundary conditions are rendered periodic, and a single (global or super) free-surface
element with Fourier global basis functions (i.e. HOS) are used.

For standing waves in a circular tank with vertical sidewall and a horizontal bottom
(say of radius R and depth h), we divide S̄F into NFE concentric (circular) annular
elements SFj

, j = 1, . . . , NFE , with (j − 1)�R � r � j�R, �R ≡ R/NFE (and
0 � θ � 2π). The sidewall (r = R, −h � z � 0) and bottom (z = −h, 0 � r � R)
of the tank are each treated as a single element, tagged as S̄w and S̄b, respectively
(i.e. S̄B = S̄w + S̄b). For these spectral elements, an appropriate choice for the basis
functions for both the free-surface and wall/bottom elements is Fourier–Chebyshev
in the azimuthal–radial directions. For SFj

, j = 1, . . . , NFE , we employ a double
expansion with NFθ and NFr Fourier and Chebyshev modes:

Ψ F
jpq(r) ≡ Ψ F

pq = Tq(r)e
ipθ , |p| = 0, 1, . . . , NFθ/2; q = 0, 1, . . . , NFr ; (A 11)

where Tq represents the qth-order Chebyshev polynomial of the first kind. For S̄w

and S̄b, we use, respectively, the basis functions:

Ψ w
pq(r) = Tq(z)e

ipθ , |p| = 0, 1, . . . , Nwθ/2; q = 0, 1, . . . , Nwz; (A 12)

Ψ b
pq(r) = Tq(r)e

ipθ |p| = 0, 1, . . . , Nbθ/2; q = 0, 1, . . . , Nbr . (A 13)

The same sets of basis functions are used for ΘF and ΘB , B = w, b.
Note that, for this geometry, in theory, NFE = 1 suffices. In practice, for given

machine accuracy, the maximum number of Chebyshev modes, say NC , we can use
in an element is limited by the condition number of the resulting equation system.
Thus, as a practical matter, we place an upper limit on NC (typically NC < ∼ 32 for
double precision) and increase the number of elements, generally NFE , to achieve the
necessary accuracy/convergence. For this problem and value of NC , a single element
for S̄b and S̄w , respectively, is found to be sufficient.

A.4. Evaluation of high z-derivatives of Φ (m)

To evaluate the Dirichlet boundary condition for Φ (m) (cf. (A 2)) and the free-surface
vertical velocity (cf. (A 4)), we need to determine, to high orders, the z-derivatives
of Φ (m), i.e. Φ (m)

zz , Φ (m)
zzz , . . . on the mean free surface S̄F . To do that, we employ an

approach wherein the high-order z-derivatives of Φ (m) are solved directly via the
associated boundary-value problems. For example, to evaluate Φ (m)

zz , the boundary-
value problem is the same as that for Φ (m), but with Φ (m) replaced by Φ (m)

z . The
additional computational effort is not significant since the equation system for the
boundary-value problem is the same and needs to be inverted only once (for a given
mean geometry, independent of order or time). Note that to obtain high accuracy in
the evaluation, it is important to ensure the requisite continuity across inter-element
boundaries, at least C1, for example, for Φ (m)

z on S̄F . To do that, we replace the
Dirichlet boundary condition at the edges of boundary elements by the continuity
condition. Details are presented in Zhu (2000).

A.5. Numerical implementation

In a pseudospectral approach, we employ a collocation method to solve equations
(A 7) and (A 8) for the unknown modal amplitudes αB

j� and βF
j�. To ensure
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exponential convergence, the collocation points are distributed uniformly for the
Fourier expansion and placed at the local maxima of TNC

(r) for the Chebyshev
spectral representation containing NC terms. The resulting system contains NF + NB

equations (NF = NFMNFE , NB = NBMNBE) which are written formally as:[
CBF DFF

CBB DFB

] {
αB

βF

}
=

{
RF

RB

}
(A 14)

Here, CBF , DFF , CBB and DFB are, respectively, the NB × NF , NF × NF , NB × NB

and NF × NB modal influence matrices given in terms of the basis functions; RF and
RB are vectors given, respectively, by RF and RB , and αB and βF are the vectors of
unknown modal amplitudes.

The matrix inversion in (A 14) is required only once for a given problem geometry,
and is independent of the time, order or base flow. In practice, the computational
effort of HOSE is dominated by the operation account at each time step. For the
general wave–body interaction problem, an operation of O((NF + NB)2) is required.
For the problem of standing-wave motion in a circular basin, the computational
effort is reduced by a factor NFθ by using fast Fourier transforms in the azimuthal
direction, where NFθ is the total number of Fourier modes. The total operation count
for the simulation of finite-amplitude waves in a circular tank including wave–wave
and wave–wall interactions up to order M is O(M(NF + NB)2/NFθ ) per time step.

Appendix B. Determination of the base flow for a nonlinear standing wave
To determine the frequency and configuration of a nonlinear standing wave

(satisfying (2.4), we seek an initial free-surface profile ζ (x, t = 0) for an initial free-
surface velocity potential Φs(x, t = 0) = 0 such that Φs , through the nonlinear
evolution, returns to zero again after some time (corresponding to T/2). To do this,
we follow the Newtonian iteration method of MR, but use HOSE computations for
the nonlinear wave simulation.

The procedure to obtain a standing wave of a specified amplitude A is as follows:
(i) given an initial (estimate of) ζ (x, 0) and T (and Φs(x, 0) = 0), use HOSE to obtain
ζ (x, T /2) and Φs(x, T /2); (ii) compute the error vector E = {Ej }:

Ej =

{
Φs(xj , T /2), j = 1, . . . , NF ,

ζ (x, 0)max − ζ (x, T /2)min − 2A, j = NF + 1,
(B 1)

where xj , j = 1, . . . , NF are the HOSE collocation points on S̄F ; (iii) compute the
Jacobian matrix J = [Jj�]:

Jj� =

{
∂Ej/∂ζ (x�, 0), � = 1, . . . , NF ,

∂Ej/∂T , � = NF + 1,
(B 2)

for j = 1, . . . , NF +1; (iv) update ζ (x, t = 0) and T using J. The Newtonian iteration
process (i)–(iv) is repeated until ||E|| becomes smaller than a preset tolerance (set to
be 10−12 in the present study).

Generally, we use the linearized ζ (x, 0) and T as initial guess. To accelerate the
convergence for steeper waves, a useful alternative is to obtain the initial guess
using (Richardson) extrapolation of the (converged) nonlinear solutions for smaller
amplitudes.
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